ENERGY TRANSMISSION THROUGH A MEDIUM
WITH LOW OPTICAL DENSITY

V. M. Kostylev and N, V., Komarovskaya UDC 536.8

The transmission of radiant energy through a medium with low optical density is analyzed
here, The radiative thermal conductivity of thin porous fiber layers was measured, and
the results are shown,

The equation of radiant energy transmission through an absorbing plane layer bounded by gray dif-
fusively emitting and reflecting surfaces, in the gray-body approximation and under conditions of local
thermodynamic equilibrium, leads to the following expression:
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A unity refractive index is assumed here and subsequently.

From a reconciliation between this and another well known expression for the radiative thermal con-
ductivity
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itfollows that ﬁ = 3/2. Under the same conditions, (1) is identical to the result based on the Milne — Eddington
approximation, That result can be obtained also directly by solving the equation of radiant energy trans-
mission with the respective boundary conditions, The latter were first defined by G. L. Polyak [1] and then
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Fig.1. Effective radiative thermal conductivity A, (W/m - deg) as a function
of the optical thickness 7 (m) and of the geometrical thickness L (m), for a
loose fibrous material (y = 30 kg/m? with e, = 0.27: 1) Nylon fiber 30 y in
diameter; 2) superfine glass fiber 1-2 p in diameter, calculated by formula
(10) (solid lines), ‘

Fig.2. Ratio 7\7./}» as a function of the optical thickness, for a layer of den-
sity 30 kg/m?, calculated by formula (10) (solid lines): 1) £ = 0.88; 2) ¢
= 0.27. Test points for superfine glass fiber (I) and Nylon fiber (1I).
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Fig.3. Functions of the optical thickness of a layer: a) ratio A,
/A for superfine glass fiber y = 30 kg/m?, polished aluminum

as the cold surface with £ = 0.087, calculated for diffusive
boundary surfaces (solid line) and with test points indicated. b)
9/ (T{-T}$), calculated from data in [3] (solid lines) and from
data in [6] (dashed lines) with &5 =1 (1), 0.88 2), 0.67 (3), 0.33
@), 0,27 (5), 0.176 (6). Test points: Nylon fiber and & = 0.28 (I),
superfine glass fiber and &, = 0.26 (II), superfine glass fiber and
g, = 0.88 (III). Curve 1 coincides with the data in [2, 7].

used on numerous occasions in several subsequent studies. It is only to be noted that the conventional
stipulations concerning the quasiisotropy of incident radiation, usually found in the literature on this sub-
ject, are superfluous for making expression (2) and u= 3/2 in (1) valid. An analogous result will be ob-
tained on the basis of the angular intensity distribution function, which can be expressed as a linear func-
tion of u, while the intensity distribution of thermal fluxes of finite magnitude is not at all isotropic.

It has been reiterated [2-4] that the assumption of y in formulas like (1) being independent of the opti-
cal density of the layer is not strictly justified. Even the contrary has been asserted. In [5], for example,
an attempt was made to prove that p is a function of 7 under conventionally assumed restrictions, A com-
parison of radiant energy fluxes through thin optical layers calculated according to formulas like (1) on the
basis of a constant u = 3/2 with results based on solutions to integral equation [6, 7] has gshown an almost
complete agreement over the entire range of T values. This has been noted in [2, 4, et al,].

It should be noted that in all these studies the concept of radiant energy transmission was a simplified
one, No congideration was given to the induced radiation of particles of the medium. The latter was as-
sumed gray, without any scattering, and subject to conditions of local thermodynamic equilibrium.

In view of all this, much interest has been shown in direct experimental studies concerning the pro-
cesses of radiant energy transmission through optically thin layers of real media. In this case it is im-
possible not to consider the effects having to do with emission and dispersion of radiant energy. It is rea-
sonable that the first stage of such a study should cover low-intensity transmission processes, in which the
conditions for local thermodynamic equilibrium are closely enough approximated, In the next stage, a study
of conditions departing from equilibrium states will make it possible to determine also the applicability
limits of the local-thermodynamic-equilibrium hypothesis,

Thus, when Ty — Ty, relation (1) can be rewritten as
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Fig.4. Relation 7,.—T, (7), calcu-
lated by Eq. (6) (solid lines) for &
=0.27 (1), 0.88 ). Test points:
Nylon fiber and £4 = 0.28 (1),
superfine glass fiber and &, = 0.28
(1I), superfine glass fiber and &,

or, finally,

T= 2 (6)

e,

Expressions (3)-(6) are completely equivalent., The Knudsen
number and the 7-parameter here are referred to continuum values
of the mean-free-path of photons according to (2). The values of
radiative thermal conductivity of layer here had been obtained ex-
perimentally under conditions of negligibly small boundary effects,
ie. at L > 7and
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The authors have experimentally studied the thermal conduc-

tivity of loose fibrous masses with a varying optical thickness. The
measurements were made under a high vacuum. In this way, the
conducted heat could be reduced to a negligibly low level and condi-
tions of radiative equilibrium could be ensured. We used superfine
blow-grade glass fiber approximately 1-2 u in diameter (average)
and staple Nylon fiber approximately 30 u in diameter, The optical
density of a specimen was varied by varying the mass of material
packed into the apparatus. '

(7)

= 0.88 (LD). We applied the classical method of a plate and a steady ther-

mal flux. The apparatus for measuring the effective thermal con-
ductivity of specimens was made up of an electrical calorimeter separated from the housing by a layer of
vacuum-ghield grade thermal insulation (VSTI).

The presence of VSTI resulted in a appreciable reduction of stray thermal fluxes and ensured a satis-
factory accuracy as well as an excellent repeatability of data. The temperatures were measured withChro-
mel— Copel thermocouples, a model R-306 low-resistance potentiometer, and a model M 195/1 galvano-
meter. The calorimeter heaters were energized from a stabilized power source. The drawn power was
measured by the potentiometer method with these instruments, The "cold" operating surface of the ap-
paratus was a shiéld cooled by running water. For materials of the boundary surface we used: oxidized
aluminum, polished aluminum, oxidized copper, and varnish coatings on metallic layers.

The effective thermal conductivity was calculated by the formula
QL 8
A= (8)
*  FAT
with the calorimeter heater power Q =1V, the temperature difference AT = T;-T,, and the surface area F
= 0,092 m?, The equivalent emissivity of the boundary surfaces was calculated by the formula for parallel
infinitely large plates
- Q (9)
T Fo(ri—T1%)
with the power Q measured without loose fiber in the apparatus. The power Q remained the same with the
gap varying from 1 to 5 mm, an indication of negligible heat leakage through the ends. The error in deter-
mining the effective thermal conductivity did not exceed 5%.

With the aid of expression (4) and letting u = 3/2, we have
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where T = (T; + Ty)/2.
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The function A, =\ () according to (10) is shown in Fig.1 with €g = 0.27 as measured. Test values
of effective thermal conductivity have also been plotted here, According to the data in Fig, 2, the differ-
ences between diffractivities of the test materials did not affect the trend of the curves for thin layers.

The continyum characteristics of our test materials (Nylon fiber y = 30 kg/m® and A = 0,031 W/m . deg at

T = 343°%K, I = 2.52 mm; superfine glass fiber y = 100 kg/m3 and A = 0.0028 W/m -deg at T = 343°K, 7 = 0.23
mm) determined from relation (11) and from test points for A, agree with those obtained by direct measure-
ments of the thermal conductivity of vacuumized optically dense layers.

The results indicate that relations (5), (10), and (11) do, within a sufficiently close approximation,
describe the dependence of A, on both the geometrical and the optical thickness of a layer. The differences
between measured and calculated A = A, () values lie within the limits of test accuracy. The preceding
discussion applies to transmission through layers with diffusively reflecting and emitting boundary sur-
faces. The use of polished aluminum as the boundary (cold) surface brought about a marked departure from
relation (10} (Fig. 3z).

This result is quite a legitimate one, The emission of most energy at low angles to the surface, which
is characteristic of polished metals,leads to anappreciable increase inthe effective optical density of a thin
layer. The data in Fig.3b for diffusive surfaces have been compared with those obtained by R. F. Probstein
[2], by M. A, Heaslet and F. B. Fuller [6], and by C. M, Usiskin and E. M, Sparrow [7].

Thus, the outcome of the experiments indicates that, when diffraction occurs at gray surfaces bound-
ing a thin layer, the value u = 3/2 may be assumed the same for every optical thickness, i.e., the houndary
effects cause the optical density of a layer to increase by a constant amount independent of 7 (Fig. 4},

NOTATION
g is the thermal flux density, W/m?
o - is the Stefan-Boltzmann constant;
€4, &, Eg are the emissivity of surface 1 and surface 2 respectwely, and equivalent emissivity of

the system of both surfaces;
Ty, Ty are the temperature of surface 1 and surface 2 respectively, °K;
T= (T, +T,/2 is the average temperature of layer, °K;
b7 is the coefficient accounting for the angular distribution of incident radiation intensity;
T is the optical thickness (density) of layer;
Tr is the fictitious optical thickness of layer, according to (6);
As Ap are the radiative thermal conductivity of an optically thick layer and of an optically thin
layer respectively, W/m . deg;
1 is the mean-free-path of photons in a medium, mm;
b is the linear space coordinate, m;
L is the geometrical thickness of layer, m;
Kn is the Knudsen radiation number;
v is the density of specimen material, kg/m?,
Q is the power supplied by electrical heater, W;
F is the area of active surface, m?;
U =cos 6 — is the angle with the normal to the surface.
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